Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Li Cheng, ${ }^{\text {a }}$ Shan Gao, ${ }^{\text {a }}$
 Li-Hua Huo ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\boldsymbol{*}}$

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.046$
$w R$ factor $=0.147$
Data-to-parameter ratio $=18.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[N, N^{\prime}-Ethylenebis(salicylideneiminato)]nickel(II) chloroform solvate

In the crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7^{-}}\right.\right.$ $\left.\mathrm{NO})_{2}\right] \cdot \mathrm{CHCl}_{3}$, the nickel complex and the solvent molecule both have crystallographic mirror symmetry. The Ni atom exists in square-planar geometry.

Comment

The crystal structure of [N, N^{\prime}-ethylenebis(salicylideneiminato)]nickel(II) was first reported in 1970 (Shkol'nikova et al., 1970) and redetermined to improved precision some 13 years later (Manfredotti \& Guastini, 1983). It has since between re-determined twice more (DiMauro \& Kozlowski, 2002; Kondo et al., 2003). The same complex has now been isolated as the chloroform solvate, (I) (Fig. 1), and is described here.

(I)

In the title solvate, the square-planar geometry of the Ni atom is almost the same as in the unsolvated structure. Atoms Ni1, C9, and C11 occupy special positions on a mirror plane.

The CHCl_{3} molecule interacts with the nickel complex by way of a bifurcated $\mathrm{C}-\mathrm{H} \cdots\left(\mathrm{O}, \mathrm{O}^{\prime}\right)$ bond (Fig.1, Table 2).

Experimental

Nickel nitrate hexahydrate $(0.58 \mathrm{~g}, 2 \mathrm{mmol})$ and an excess of triethylamine (1 ml) were added to N, N^{\prime}-ethylenebis(salicylideneimine) $(0.54 \mathrm{~g}, 2 \mathrm{mmol})$ dissolved in a small volume of ethanol. The mixture was heated for 1 h . After removal of the solvent, a red solid was collected, and this was purified by recrystallization from chloroform. Red prismatic crystals of (I) were obtained. CHN elemental analysis, calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{Ni}$: C 45.95 , H 3.40, N 6.30\%; found: C 45.91 , H 3.43, N 6.28\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}$
$M_{r}=444.37$
Orthorhombic, Pnnm
$a=6.997(1) \AA$
$b=14.221(3) \AA$
$c=18.355(4) \AA$
$V=1826.4(6) \AA^{3}$
$Z=4$
$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 14841 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, red
$0.35 \times 0.26 \times 0.18 \mathrm{~mm}$

Received 18 January 2005
Accepted 20 January 2005 Online 29 January 2005

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.507, T_{\text {max }}=0.764$
16264 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.147$
$S=1.07$
2150 reflections
118 parameters
H -atom parameters constrained

2150 independent reflections 1766 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 8$
$k=-18 \rightarrow 18$
$l=-22 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0952 P)^{2}\right. \\
& +0.4858 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.73 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{O} 1$	$1.844(2)$	$\mathrm{Ni} 1-\mathrm{N} 1$	$1.843(3)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$84.6(1)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$178.9(1)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	$94.8(1)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{i}$	$85.9(2)$

Symmetry codes: (i) $x, y,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9 $\cdots \mathrm{O} 1$	0.98	2.43	$3.292(5)$	147
C9-H9 O^{i}	0.98	2.43	$3.292(5)$	147

Symmetry codes: (i) $x, y,-z+1$.
H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and refined as riding, with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ applied in all cases.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as dashed lines. [Symmetry code (i): $x, y, 1-z$.]

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) and the University of Malaya for supporting this study.

References

DiMauro, E. F. \& Kozlowski, M. C. (2002). Organometallics, 21, 1454-1461. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kondo, M., Nabari, K., Horiba, T., Irie, Y., Kabir, M. K., Sarker, R. P., Shimizu, E., Shimizu, Y. \& Fuwa, Y. (2003). Inorg. Chem. Commun. 6, 154-156.

Manfredotti, G. \& Guastini, C. (1983). Acta Cryst. C39, 863-865.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shkol'nikova, L. M., Yumal', E. M., Shugam, E. A. \& Voblikova, G. A. (1970). Zh. Strukt. Khim. 5, 886-890.

